
Daniel Harabor, Adi Botea
NICTA & The Australian National University

Hierarchical path planning for multi-size 
agents in heterogeneous environments

IEEE Symposium on Computational Intelligence and Games
December 18, 2008



Outline

• Motivation
• Prior Work
• Planning with Clearance Values
• Abstraction and Hierarchical Planning
• Results
• Conclusion



Motivation

Path planning literature is full of assumptions...
That don't always hold in reality!

Knowledge engineering challenges:
o Identifying relevant domain-specific information.
o Extracting it automatically.
o Exploiting it to guide search.

Application areas:
• Video games.
• GPS systems.
• Any path planning system with heterogeneous agents.



Pictures: Danfung Dennis, NYTimes (04.12.2007)

GPS Fail



Problem definition

Small Big

OK OK Not OK

Example map
Example agent types

Movement rules

Terrain traversal capabilities:
• Ground
• Trees
• Ground or Trees



Previous Work

• A* [Hart et al, 1968]
• Brushfire [Latombe, 1991]
• HPA* [Botea et al, 2004]
• PRA* [Sturtevant & Buro, 2005]
• TA*/TRA* [Demyen & Buro, 2006]
• CMM [Geraerts & Overmars, 2007]



Clearance Annotations

Intuition: Calculate size of maximum traversable area at each 
octile (clearance value).



Results (toymap)

Ground Trees Ground or Trees

Clearance values for different capabilities:



Results (toymap)

Ground Trees Ground or Trees

Clearance values for different capabilities:

 Space complexity: 



Results (toymap)

Ground Trees Ground or Trees

Clearance values for different capabilities:

Compute on demand!
Emoticons: Wikimedia Foundation

 Space complexity: 



1 11 11 1 1 111

1

1 1

1 11

1111 1

1 11

1 11

1

11

111

1 11

1 1

11

Reducing the problem

• Theorem 1: Any problem involving an agent of arbitrary 
size and capability can be reduced into a canonical 
problem (agent size = 1, capability = 1 terrain).

A

G

Initial problem Reduced size Reduced size 
and capability

A

G

A

G



Annotated A*

Search process: 
• Similar to A*.
• Extra parameters: Agent's size and capability.
• Only expand nodes with clearance > agent size.

Pros:
• Works great!

Cons:
• For small problem sizes... 



Abstraction

Intuition: Use hierarchical search. Apply cluster-based 
abstraction as per [Botea et al, 2004]

5x5 Clusters



Inter-cluster Transitions

Approach: Build abstract graph by finding all entrances 
between clusters.

C1

C3

Identify entrances



Inter-cluster Transitions

Approach: Build abstract graph by finding all entrances 
between clusters.

C1

C3

Identify entrances



Inter-cluster Transitions

Approach: Build abstract graph by finding all entrances 
between clusters.

C1

C3

Identify entrances



Inter-cluster Transitions

Approach: Build abstract graph by finding all entrances 
between clusters.

C1

C3

Identify entrances



Inter-cluster Transitions

Approach: Build abstract graph by finding all entrances 
between clusters.

C1

C3

Identify entrances Identify transition points



Inter-cluster Transitions

Approach: Build abstract graph by finding all entrances 
between clusters.

C1

C3

Identify entrances Identify transition points Final result



Intra-cluster Transitions

Approach: Use AA* to find all paths between each pair of 
nodes inside a cluster. 

If a path exists, add a new intra-edge edge to abstract graph; 
annotated with the capability and size parameters used by AA* 



Compacting the abstract graph

• Strong dominance
• Weak dominance.

Method produces a representationally complete graph but 
can get rather large.

Solutions:



Strong dominance example

Intuition: Retain paths with larger clearance, all else being 
equal.

Result: High quality abstraction.



Strong dominance example

E3 E5

E4 E6

Intuition: Retain paths with larger clearance, all else being 
equal.

Result: High quality abstraction.



Strong dominance example

E3 E5

E4 E6

Intuition: Retain paths with larger clearance, all else being 
equal.

Result: High quality abstraction.



Weak dominance example​

Result: low quality abstraction

Intuition: Retain edges with large clearance traversable by 
many agents (freeways vs. trails)



• Extends HPA* [Botea et al 2004]
o Insert start and goal into abstract graph
o Find a hierarchical solution
o Refine

• AA* for insertion step.
• Hierarchical search is a variation on A*

o Requires agent size and capability as parameters
o Only add successors to open list if edge is traversable

Hierarchical Annotated A*



Experiments: Setup

• 120 maps from Baldur's Gate.
• 3 cluster sizes (10, 15, 20)
• 5 derivative sets

o Randomly interspersed each map with second terrain 
type (10%, 20%, 30%, 40% and 50%).

• 2 agent sizes (1 and 2).
• Randomly assigned capability
• 100 valid problems per map.
• Each agent size solves each problem.
• Intel Core2 Duo @ 2.4GHz w/ 1GB RAM (OSX 10.5.2)
• Implemented using Hierarchical Open Graph
• Source code at: http://ahastar.googlecode.com

http://ahastar.googlecode.com
http://ahastar.googlecode.com


Experiments: Graph size

Original gridmaps averaged 4469 nodes & 16420 edges.

Best case (Cluster size = 20)
HQ LQ

Nodes 4.0% 2.0%

Edges 5.0% 0.9%

Worst case (Cluster size = 10)
HQ LQ

Nodes 16.6% 15.7%

Edges 38.4% 23.6%



Experiments: Path quality

●

● ●

●
● ●

0 10 20 30 40 50

0
5

10
15

HAA* Path Quality (Cluster size = 15)

% soft obstacles

%
 e

rro
r

● High Quality Abstraction
Low Quality Abstraction



Experiments: Search effort

● ● ●
●

●
●

●
●

●

●

●

●
● ●

●

●

●

●

0 100 200 300 400

0
50

00
10

00
0

15
00

0

Total search effort (SO=20%, Cluster size = 15)

optimal solution length

av
g.

 n
od

es
 e

xp
an

de
d

● Annotated A*
HAA* (High Quality Abstraction)
HAA* (Low Quality Abstraction)



Conclusion

• Presented solutions for an overlooked but important problem 
in single-agent pathfinding.
• Clearance value based pathfinding is simple and powerful.
• Possible to build efficient hierarchical representations of 

complex environments.
• Detailed empirical analysis shows method is very effective.

• Near optimal solutions to complex problems.
• Small memory overhead in practice.

• Future:
• Reducing insertion effort.
• Extend ideas to multi-agent case.
• Apply to non-tile map encodings (like navigation meshes).



?
Questions


